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Received 27 June 1985 

Abstract. Several diffusion-limited aggregates were computed according to the classical 
two-dimensional square-lattice model of Witten and Sander. A new algorithm enabled 
large clusters of 10’ particles to be investigated with moderate computing resources. At 
large radius (and in contrast to previous work on the same model) the aggregates were 
observed to be anisotropic, their overall shape depending on the lattice of deposition. 

There has recently been interest in non-equilibrium growth processes, particularly those 
governed by diffusion where protrusions grow more rapidly. Dendritic and often 
chaotic patterns result. Measurements have been reported on: exothermic crystal 
growth governed by heat diffusion [l], diffusing copper ions depositing on a growing 
cathode [ 2 ] ;  and on systems governed by analogous or related equations: electrical 
breakdown [3], anodic etching of silicon [4], the moving interface between liquids of 
different viscosities [5], and diffusing colloid particles sticking together [ 6 ] .  Interest 
has centred on the (statistical) scaling properties [7] of these patterns. If a pattern is 
self-similar then all relevant lengths (e.g., mean radius, standard deviation in radius) 
are proportional to one another. If it is fractal the mean number of particles N within 
radius R of a particle shows N = R D  where D (the Hausdorff dimension) need not 
be an integer. Many of the experiments indicate self-similar fractal behaviour. 

These experiments have been related to the model for diff usion-limited aggregation 
proposed by Witten and Sander [8] and further investigated on computer by Meakin 
[9,10] and others. Particles diffused one at a time until they wandered far away (in 
our simulations to 100 cluster radii) or reached ‘sticky’ sites adjacent to the cluster, 
where they deposited and made adjacent unoccupied sites sticky. For simplicity a 
square lattice was used, the sticky sites of a deposited particle were in a square pattern 
(deposition habit), and surface tension was neglected. It was suggested [8,9] that 
random noise would smear out these microscopic details at sufficiently large radii, 
leaving universal macroscopic behaviour. Indeed the Hausdorff dimension D of this 
model has been confirmed experimentally [2,3,5]. 

Recently published computations [ 10,111 on clusters of 2500 particles grown with 
a square deposition habit showed an unexpected departure from self-similarity in 
measurements comparing the deposition radius R, with the standard deviation in R, 
and the seed to centre-of-mass (SCM) distance, but it was unclear if this represented 
the universal macroscopic behaviour. The principal problems with growing large 
clusters to check this have been the computer time (order R 2  per particle) and store 
(order R 2  in two dimensions) required. 

There is an established method to speed up diffusion simulations [12,13]. If a 
large circle can be drawn which is centred on the diffuser and which contains no 
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obstacles or sticky sites, then the diffuser will first cross this circle at random angle, 
by symmetry. Thus the several small steps to reach the boundary of the circle can be 
replaced by a single choice of random angle. The complicated shapes of diffusion- 
limited aggregates make it difficult to determine large empty circles; so we adapted 
this method to use large empty squares centred on the diffuser instead. A lookup table 
(calculated analytically using Laplace’s equation for the diffuser’s probability density) 
was used with a random number to compute the first crossing of the square. The 
distribution of first crossings was compared with a conventional stepping algorithm 
and found to be in agreement to better than 1 O/O. 

To help determine large empty squares, information was maintained as each particle 
was deposited. Each new sticky site was entered on a conventional lattice grid map, 
and also on a hierarchy of coarser grid maps (boxes of 2 x 2 lattice spacings, 4 x 4 and 
so on). An entry was zero only if it contained no sticky sites. In a refinement, 
information was omitted on a fine scale about empty coarse-scale boxes. Occupied 
boxes then contained the memory addresses of their finer-scale information. This, 
together with bit-maps on the finest scale, reduced the store to 1.3 bytes per deposited 
particle and overcame the problem of storing large clusters. 

Clusters of lo5 particles required about ten minutes of CPU time on an IBM 3081. 
This represents approximately a tenfold improvement over conventional algorithms. 
Figure 1 shows that CPU time per particle increased as (log R)’ where R is the maximum 
cluster radius. This may be understood qualitatively by noting that, if diffusion were 
by small steps of constant distance, the time for diffusion would increase as R 2  (the 
usual time requirement). However, each step was on average proportional to the 
distance to the cluster, so on a logarithmic distance scale they were constant, giving 
the (log R)’ dependence. 

Figure 2 shows three representative clusters, and also the superposition of sixteen 
clusters, all grown with the conventional square habit. The superposition shows a 
striking diamond profile (this was also observed in superpositions of clusters as small 
as 500 particles), indicating that fingers extended faster in radius along axial directions. 
The angular distribution of particles is shown quantitatively in the upper part of figure 
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Figure 1. Plot of computer time per particle d t / d N  against maximum cluster radius R 
(shown in lattice units). The plot indicates that d t / d N E ( l o g  R)’. Particles accreted at a 
rate of about 100 per second at R = 1000 lattice units. 



Figure 2. Three representative clusters, and the superposition of sixteen clusters, each of 
lo5 particles and grown on the standard DLA model with a square deposition habit. Scale 
bar is 1000 lattice units. 

Figure 4. One representative cluster, and the superposition of eight clusters, each of lo5 
particles and grown with a diagonal deposition habit. Scale bar is 1000 lattice units. 
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Figure 3. Plot of mean deposition radius R,, radius of gyration R,, penetration depth [, 
seed centre-of-mass SCM, anisotropy of depositing particles C =(cos 48), S = (sin 48) 
against number of particles N. 

3, and shows no significant dependence on angle from the seed up to 30 000 particles, 
indicating that axial fingers did not grow significantly faster in mass. Beyond 30 000 
particles the fourth circular harmonic C =(cos 40) began to appear above noise, 
perhaps as a result of dendritic competition favouring the more extended axial growths, 
although this was a weak effect which required averaging over a large number of 
growths in order to be seen clearly. Figure 4 and the upper part of figure 5 provide 
evidence that this anisotropy resulted primarily from the deposition habit rather than 
the square lattice for diffusion. The deposition rule is rotated through 45 degrees, and 
the anisotropy was correspondingly rotated. (The two habits were not strictly compar- 
able because multiple deposition was possible in the second habit.) Anisotropy has 
independently been noted [14] in smaller growths on a different model where surface 
tension processes were simulated and fractal behaviour may have been absent, and it 
was attributed to the initial square-habit growth pattern becoming amplified by the 
growth process. 

The simplest interpretation of the straight-sided growth profile is in terms of growth 
paths directed away from the seed having equal numbers of steps. Suppose that the 
path has N,, Ny steps in the *x, * y  directions, where N, + Ny = N. If the steps were 
uncorrelated, as in a random walk, there would be (x*)= N, and (y’) = Ny, giving 
(x2+ y 2 )  = N and a circular profile. I f  on the other hand all the steps were directed 
away from the seed point, there would be 1x1 = N, and IyI = Ny and the equation 
1x1 + lyl= N which yields a diamond profile similar to that observed in our growths. 
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Figure 5. As for figure 3, but for a diagonal deposition habit. 

Note the strikingly straight edges in the superposition of figure 2, which support this 
interpretation. Also, recent computer measurements by Meakin (private communica- 
tion) indicate that the fingers of growth are one-dimensional (like a directed walk) ; 
indeed visual inspection of figure 2 does suggest directed growth (contrary to the 
observations in [SI). Natural snowflakes also exhibit directed growth with a crystalline 
habit, and similar interpretation may account for the accurately straight-sided 
hexagonal profiles which can result (see for example figure 1 of [l]). 

The above interpretation neglects such complications as splitting or backtracking 
of paths; and, more importantly, dendritic competition between different fingers of 
growth. The diamond profile may well not represent the final limit of cluster anisotropy: 
note in figure 3 that the anisotropy appeared to be increasing even for our largest 
growths, and compare figures 4 and 5 for the diagonal habit clusters, which have 
clearly become more anisotropic. More generally we can conclude that the local 
perturbation of restricting the growth to a square lattice becomes increasingly important 
at large length scales. 

Figure 3 also shows the mean and its standard error, averaged over sixteen clusters 
of lo5 particles, for: deposition radius Rd,  radius of gyration R,, penetration depth 6 
and SCM distance. The data are in good agreement with the equivalent experiment (to 
clusters of only 2500 particles) reported in [ 1 I]. (We measured the penetration depth 
6 over the last P = 10% of deposited particles, during which the mean deposition 
radius was increasing. Our formula differs from that of [ l l]  by P Rd/(2Dd3),  or less 
than 0.02 R, in our case.) The power laws which best fit the data in the extended 
range N = 3000 to N = lo5 particles are: R d a  N1.69, R,K .$a and s c M a  

. We conclude that these results are consistent with simple scaling: R d =  ~ ( 2 . 2 z t 0 . 4 )  
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1.48 R,, 5 = 0.22 R,, but their interpretation is complicated by the anisotropy (see 
discussion below). The SCM distance reached a maximum of only 20 lattice units, so 
it may have been still settling down to scaling over the range reported, and we can 
only extrapolate SCM < 0.05 R,. For comparison, figure 5 shows corresponding plots 
for the diagonal deposition habit, but note with this habit approximately 8% of particles 
were able to bypass sticky sites and reach already occupied sites, where they deposited. 

If large square-lattice DLA clusters are not statistically isotropic, it is no surprise 
that their penetration depth (which measures the departure of deposition from a circle) 
scales proportionately to cluster radius. To obtain a true measure of penetration one 
must work relative to the actual average cluster shape, itself varying with N, which 
would require many more clusters than we were able to generate. An apparent 
alternative is to study DLA off -lattice, where the clusters are statistically isotropic by 
symmetry, but again the observation R, would only prove that the clusters were 
not circular. 

Several important question are raised. Within our range (to lo5 particles) the 
angular distribution 6f particles has only begun to show significant anisotropy: does 
the effect saturate, and if so what is the limiting behaviour? Do the exponents such 
as the fractal dimension D depend on the lattice for very large aggregates? Analogous 
measurements might be made in higher dimension or with other lattices (e.g. triangular 
lattices). Finally one must question to what extent large off-lattice DLA clusters develop 
a characteristic shape. This last question might be answered by measuring the power 
spectrum of the angular distribution of particles for very large clusters. 
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